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Abstract

A genceralization of the procedure to study shapes and stability of algebraic nuclear models
introduced by Gilmore is presented. One calculates the expectation value of the hamiltonian
with respect to the coherent states of the algebraic structure of the system. Then equilibrium
configurations of the resulting cnergy surface, which depends in gencral on state variables
and a set of parameters, are classified through the Catastrophe theory. For one and two-
body interactions in the hamiltonian of the interacting boson model-1, the critical points
are organized through the Cusp catastrophe. As an cxample, we apply this Separatriz to
describe the encrgy surfaces associated to the Rutenium and Samarium isotopes.

1 Introduction

The geometry of algebraic nuclear models can be studied by means of the time-dependent varia-
tional principle [1], [2]. This formalism provides us with a classical limit of the nuclcar model, in
particular we are mainly concerned with the static propertics of the hamiltonian function (energy
surface) associated to the considered algebraic nuclear model. In general these hamiltonian func-
tions depend on state variables and a sct of parameters, then the appropriate mathematical tool
to determine the most general behaviour of their cquilibrium configurations is the Catastrophe
formalism {3].

A conncction between the interacting boson model-1(IBM-1) [4] and the geometrical approach
of Bohr-Mottelson [5] was donc by expressing the IBM-1 hamiltonian in terms of shape variables.
This can be achieved by means of the intrinsic boson states defined by [6] or by the corresponding
coherent states [2]. Analysis of shape and phase transitions in this model have been done by [7],
[8]. In this work we apply the procedure introduced in Ref. [2] to the interacting boson model,
but for the general hamiltonian of onc and two-body central interactions involving s and d bosons
[4] and determining its associated Separatriz. We show that the equilibrium configurations can be
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classified through the Cusp catastrophe, this means that two parameters are enough to describe
the most general energy surface. Therefore this analysis generalize thpse presented previously
[4], in which only transitions between pairs of exact SU(5), O(6) and SU(3) symmetries are
considered. In the last decade, effective hamiltonians of the IBM-1 have been used to describe
energy spectra and transition probabilities of chains of isotopes and isotones [9], {10]. In particular,
the effective hamiltonians for Ru [11] and Sm [12] isotopes were determined, i.e., the best choice of
the parameters of the general IBM-1 hamiltonian that reproduced the corresponding experimental
data. Using these effective hamiltonians we construct their energy surfaces and show that their
critical points follow a curve in the parameters space organized by the Cusp Separatriz. This let
us to know: i) How many equilibrium configurations yield the system and ii) If the behaviour of
the model around the critical points may or may not be approximated by an harmonic oscillator.

In the Second Section we review how the energy surfaces can be determined considering a
hamiltonian constructed in terms of the generators of a Heisenberg-Weyl algebra. In the Third
Section a brief summary of the IBM-1 is presented. In the Fourth Section, an analysis of the
shape and stability of the most general energy surfaces of the IBM-1 is made, also the curves
associated to the Ru and Sm isotopes are plotted in the parameters space. Finally some remarks
are indicated in the last section.

2 Energy Surfaces of Algebraic Models

The cnergy surfaces (ES) of algebraic models can be determined by means of the coherent states
of the associated algebraic structurc of the hamiltonian. As an example, a hamiltonian written in
terms of the generators of a Heisenberg-Weyl algebra is considered, i.¢.,

H=coblb+cy (D12 +0%) +¢ (OV+10), (1)

where the operators b' and b satisfy standard creation and annihilation commutation relations.
Although this hamiltonian can be solved analytically by means of a Bogoliubov transformation,
we use it to illustrate the procedure to construct the coherent states and the ES of an algebraic
model.

The coherent state is defined by the action of the raising generator on the vacuum state {1}

|a) = exp(a” b")[0) . (2)

The Baker-Campbell-Hausdorff formulas can be used to calculate the overlap of two coherent
states and the coherent state representation of the creation and annihilation boson operators

(a'|a) = exp (a'a”) , (3)
(alb= 2ol (o]t =aal (4
‘ da '’
Then the energy surface is given by
E(a) = lim {o]Ha) : (5)

a's o (a'|a)
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Substituting the expressions (1), (3) and (4) into the previous one, onc gets the result

E(p) = (co + 2c2)p® + 2¢c1p , (6)

where the reality condition a = a* = p was also used.

3 The Interacting Boson Model

In 1975 this model [4) was introduced to describe collective properties of even-even nuclei far from
closed shells through the interactions between two kinds of bosons, one with angular momentum
L = 0 (the s-boson) and another with angular momentum L = 2 (the d-boson). The six possible
boson states give rise to a U(6) group structure. The bosons represent pairs of fermions, the
s-boson reflects the strong pairing attraction of identical nucleons whereas the d-boson is a result
of the weaker J = 2% attraction [4]. Therefore nuclei are pictured as systems of s and d bosons,
whose number is equal to half the number of the valence nucleons, the core being considered inert.
When a shell is more than half full, hole-pairs are counted instead of particle-pairs.

The most gencral one and two body hamiltonian that conserves the total number of bosons is

Hipy = e Ny+eaNa+ ) %V2L +1 [[d! x d') M x [d x d] (1] ©
L=0,2,4

+ % ([[d' x d'] @ x d] @ s + st [d! x [d x d] &) @)

Z([[d" x " O s 4 st [dx d] )
Voug sts[d! x d] @ 4 uy s25?, (7)

where the scts of boson operators s, st and d;", d, satisfy the following, different from zcro, com-
mutators

[s. ) =1,  [dd\]=6,, (8)

Now, we construct the coherent state of a six dimensional harmonic oscillator, following the
procedure indicated in the previous section. However in this case the associated group is compact
and then we restrict the exponential to only one term of the Taylor serics expansion,

IN, @) = An(s' + 3 adh) |0}, (9)

where Ay is the normalization constant. Evaluating the corresponding Eq.(5) one arrives to the
formulae for the energy surface of the model [8}, i.e.,

g’ + N(N-1)
(1+p82)  (1+p5%)?
where it was used that the laboratory variables a, can be expressed in terms of two intrinsic
parameters J and v plus threc Euler angles. Besides as the energy surface is a rotational invariant

E(B,7)=Ne (a1 8* + a2 B cos 3y + a3 8% + uy) , (10)
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all the dependence in the Euler angles disappear. The parameters a,, a3, a3, and € of the Eq.(10)
are combinations of those that appear in the IBM-1 hamiltonian (7)

Co Ca 964

a = 10+?+§ ) (11)
8

a = - 5‘51}0, (12)

ag = —iv + u (13)

3 \/—5- 2 0

€= € —¢€,. (14)

4 Shapes and Stability of Energy Surfaces

The energy surfaces define functions of state variables and a set of parameters, and the Catastrophe
theory is used to analize their equilibrium configurations. This formalism let us organize all the
possible shapes of the ES into well defined separated regions of the paramecters space.

To illustrate how this is done, we consider the potential cnergy surfaces (PES) of the simplest
version of the Gencralized Collective Model [5), i.e.,

V(B,7;Ce,C3) = B — C3 Fcos3y + C2 2 . (15)

The equilibrium or critical points arc determined by solving the cquation 7V(8,v) = 0. The
results are given by (0,0) and (8, 7o), with

3C; + 1/9C? — 32C.
Bp = > 3 2, y%=0,1/3. (16)

(1 8 )

The set of degenerated critical points defines a locus in the parameters space which is called the
Separatriz. This can be obtained through the determinant of the Hessian matrix or by other
procedures, in this case it is immediate that the critical points are double degencrated if the
parameters satisfy the expressions

9C2-32C, = 0, (17)
C,=0, C3 # 0. (18)

For the expression (17) the critical points are localized in fp = 3C3/8 while for (18) in G = 0.
Besides, it is straight to prove that if C; = 0 and C3 = 0 the critical point is triple degenerated
and localized at §y = 0. The Separatriz of the system is shown in Fig.1. It divides the space in
regions each characterizing a typical shape yield by the model. By means of the transformation
B = y + C3/4 the Separatriz is taken to the canonical form of the Cusp catastrophe.

Now we study the cquilibrium configurations of the encrgy surface associated to the IBM-1,
which is given in Eq.(10). Then we calculate the critical points by taking the derivatives with
respect to § and v variables. It is straightforward to sce that the critical points correspond only
to ¥ = 0 (prolate case) or v = 7/3 (oblate case). Thercfore we can restrict to the prolate case,
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without losing generality. The cnergy surface (10), with v = 0, can be re-written in terms of the
following parametcrs

2up(N = 1) = (N — 1)ag — ¢

T T (N1 —(N-1)ag+e’ (19)
. _ 20.2(N - 1)
2= 2(11(N—1)—(N—1)G-3+€ ' (20)
and it takes the form
1
) = S5 5y {8+ 11262 +2) — 128"} (21)

where E(8) = E(8,7 = 0)/N — €, — ug(N — 1). Onc has to noticc that the oblatc case can be
regaincd by interchanging r2 by —r2 or cquivalently a; by —as.

C3

FIG. 1. Scparatrix for the Bohr Mottelson Hamiltonian
To find the extrema in 8 of the Eq.(21) onc nceds to solve the equation
B(ryB+4p2—=3r,0+4r)=0. (22)

From this cxpression, onc determines the locus in the parameters space (r9, 11) of degenerated
critical points. Then the Separatriz of the model is defined by the curves

(16 +975)%2 32
5412 272
ry = 0. (24)

1, (23)

rn =

This Separatriz is shown in Fig.2 and it corresponds to the Cusp catastrophg although it does not
has the canonical form.
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FIG. 2. Scparatrix for the IBM-1 Hamiltonian

Now we applied the results to find the shapes and stability of the Ru and Sm isotopes. For
the Ru case, one has the number of valence protons pairs, N, = 3. As we consider isotopes with a
mass number varying from A = 98 — 110, the corresponding number of neutron bosons runs from
N, =2 to N, = 8. Thus the size of the space in the IBM-1 is determined by the total number
of bosons, which is the sum of the numbers of proton and neutron bosons. In the Sm case, one
has the number of proton bosons, N, = 6, and as we take into account A = 148 — 160, the
number of neutron bosons runs from N, = 2 to NV, = 8. An analysis of their energy spectra and
elecctromagnetic transitions using the hamiltonian (7) is made in [11] and [12]. For both isotope
chains, the parameters used are presented in the first eight columns of Table I. Substituting these
parameters into the equations (11) to (13) we get the values of a) ,a; and a3. These are given in
the last three columns of Table I, by means of which one can easily construct the corresponding
energy surface of each nucleus.

To find the region of the Separatriz, Fig. 2, where the different isotopes are localized one
calculates the parameters r; and 7, through the equations (19) and (20), as functions of the total
number of bosons. For the Ru, one gets the expressions

_990.2 4 146.2(N — 1)

"= g0z+a02N-1) ' 2= (2)
while for the Sm isotopes the parameters are
. 2171.2+4+ 258.3(N —1) . 86 (N ~1) (26)
‘T oane+1512(N=1)° 2T A 15I(N=1) "

The localization of the ﬁoints (25) and (26) are shown in Fig. 3 and Fig 4, re§pectively.

TABLE . Parameters, in KeV units, used to describe the Ru and Sm isotope chains
€ Co C2 Cq Ug U2 Yo Vg aj a3 as
Ru | 990.2 |-1854 | -774 | -04 |-53.0 1233 0 |-52.1] -29.7 0 -52.1
Sm | 2170.6 | -613.7 | -318.8 | -377.6 | 227.4 | 0.4 | 89.9 | -33.0 | -204.1 | -43.0 | -256.9
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FIG. 3. Plot of the points (25) associated to the Ru isotopces chain.

10

FIG. 4. Plot of the points (26) associated to the Sm isotopes chain.

5 Conclusions

For the Bohr-Mottelson model the yiclded shapes and cquilibrivm configurations are classified by
the Separatriz of Fig.1. Onc can identify four regions: (i) Above the parabola, the PES have one
minimum at 8 = 0. ii) Between the parabola and the C; axis, in the PES appear additionally
a sccond minumum at g # 0. iii) Below the Cj axis the PES have two mimima at g # 0 and
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the maximum occurs at 8 = 0. The PES around these critical points can be approximated by
an harmonic oscillator. iv) On the locus of points that define the Separatriz, we have shape
transitions and in the vecinity of the critical points (16) the PES cannot be approximated by
quadratic functions. It is important to remark that the PES have a mirror symmetry along the
Cj axis, which physically represents transitions from prolate to oblate shapes.

For the IBM-1 hamiltonian one gets (see Fig. 2): (i) For positive values of r; one has two
regions, above the curve the ES present one minimum at # = 0 and below the curve they have
a second minumum at 3 # 0. ii) For negative values of r; onc has again two regions, above the
curve the ES are built with two minima at § # 0 and a maximum at 8 = 0 and below of it,
the ES have one mimimum point at § # 0 and a maximum at § = 0. For the critical points
mentioned above the energy surfaces can be approximated by an harmonic oscillator. iii) Finally
on the Separatriz, there are shape transitions, and in the vecinity of their critical points the ES
cannot be approximated by quadratic functions. It is important to remark that thesc ES have
also a mirror symmetry along the ry axis, representing transitions from prolate to oblate shapes.
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